

SUGGESTED CONCRETE DESIGN PROCEDURES

Analysis by the Portland Cement Association for the development of connector design value in pullout strength in concrete cap.

EXAMPLE: Given:

$V = 9,214\#$ (allowable uplift load for 2 connector plates to pile)

$d = 7-1/2"$ $c = 10-1/2"$

$$b_o = \pi (c + d)/2$$
$$= 3.14 \times 18 \times 0.5 = 28.2"$$

$$V_c = \frac{V}{b_o d} = \text{unit shear stress in concrete}$$

V = total load

d = depth to reinforcing steel

c = pile diameter

Solve:

$$V_c = \frac{V}{b_o d} = \frac{9,214}{28.2 \times 7.5} = 43.6 \text{ psi}$$

$$V_c = \text{allowable for concrete}$$
$$= 100 \text{ psi.}$$

$$b_o = \pi (c + d) = \text{circumference at critical section}$$

NOTE ABOUT b_o : Where only two plates are used, b_o might be assumed to be equivalent to one half a full circumference, or some other fraction thereof. The quantity b_o should be established through experience and engineering judgment.